Algae as Fuel
==================================================================================
originally posted at http://www.technologyreview.com/Energy/18138/
Technology Review - Published by MIT
Monday, February 05, 2007
Algae-Based Fuels Set to Bloom
Oil from microorganisms could help ease the nation's energy woes.
By Kevin Bullis
Relatively high oil prices, advances in technology, and the Bush administration's increased emphasis on renewable fuels are attracting new interest in a potentially rich source of biofuels: algae. A number of startups are now demonstrating new technology and launching large research efforts aimed at replacing hundreds of millions of gallons of fossil fuels by 2010, and much more in the future.
Algae makes oil naturally. Raw algae can be processed to make biocrude, the renewable equivalent of petroleum, and refined to make gasoline, diesel, jet fuel, and chemical feedstocks for plastics and drugs. Indeed, it can be processed at existing oil refineries to make just about anything that can be made from crude oil. This is the approach being taken by startups Solix Biofuels, based in Fort Collins, CO, and LiveFuels, based in Menlo Park, CA.
Alternatively, strains of algae that produce more carbohydrates and less oil can be processed and fermented to make ethanol, with leftover proteins used for animal feed. This is one of the potential uses of algae produced by startup GreenFuel Technologies Corporation, based in Cambridge, MA.
The theoretical potential is clear. Algae can be grown in open ponds or sealed in clear tubes, and it can produce far more oil per acre than soybeans, a source of oil for biodiesel. Algae can also clean up waste by processing nitrogen from wastewater and carbon dioxide from power plants. What's more, it can be grown on marginal lands useless for ordinary crops, and it can use water from salt aquifers that is not useful for drinking or agriculture. "Algae have the potential to produce a huge amount of oil," says Kathe Andrews-Cramer, the technical lead researcher for biofuels and bioenergy programs at Sandia National Laboratories, in Albuquerque, NM. "We could replace certainly all of our diesel fuel with algal-derived oils, and possibly replace a lot more than that."
To be sure, the use of algae for liquid fuels has been studied extensively in the past, including through a program at the National Renewable Energy Laboratory (NREL) that ran for nearly a decade. At the time, the results were not encouraging. The NREL program was terminated in 1996, largely because at the time crude-oil prices were far too low for algae to compete.
But Eric Jarvis, an NREL scientist, says that enough has changed that NREL researchers expect to restart the program within the next six months to a year. When the program was cancelled in 1996, oil prices were relatively low. Today's higher oil prices will make it easier for algae to compete. Still, Jarvis cautions that "you have to be careful because there's a lot of hype out there right now."
Biotech advances in the past decade could help. New genomic and proteomic technologies make it much easier to understand the mechanisms involved in algae-oil production. One of the challenges researchers have faced is that while some types of algae can produce large amounts of oil--as much as 60 percent of their weight--they only do this when they're starved for nutrients. But when they're starved for nutrients, they lose another of their attractive features: their ability to quickly grow and reproduce. Researchers hope to understand the molecular switches that cause increased oil production, with the added hope of triggering it without starving the algae. This could dramatically increase oil production and drive down prices.
A better understanding of biology may help researchers address another problem. The cheapest way to grow algae is in open ponds. But open ponds full of nutrients invite other species to take over, competing with the algae and cutting down production. LiveFuels, which is funding and coordinating research at its own lab and at those at both Sandia and the NREL, hopes to create algal ecosystems that resist such invaders by ensuring that all the nutrients are converted to forms the algae can easily use, says David Kingsbury, the chair of the company's scientific advisory board.
Recent tests of an algae-based system developed by GreenFuel, which, unlike LiveFuels, is developing closed bioreactors, showed that it could capture about 80 percent of the carbon dioxide emitted from a power plant during the day when sunlight is available. Although this carbon dioxide will later be released when the fuel is burned in vehicles, the carbon dioxide would have entered the atmosphere anyway. Reusing it in renewable liquid fuels makes it possible to prevent the release of carbon dioxide from fossil fuels, thereby decreasing total emissions.
The growing interest in regulating carbon-dioxide emissions could also be a boon to algal fuels. "If there is a carbon tax, or another way to basically make money by capturing carbon dioxide, that could definitely impact the economics," Jarvis says. But GreenFuel's John Lewnard, vice president of process development, says the company thinks it can reach competitive prices without carbon taxes.
But for now, lowering costs will mean overcoming many technical hurdles. "Clearly, [producing fuel from algae] can be done," says Lissa Morgenthaler Jones, LiveFuels's CEO. "The only question is whether we can do it cheaply. And the only way we're going to find that out is if we do it--if we actually go out, crank it through, spend some millions on it, and make it happen."
There is plenty of federal interest these days. In his State of the Union address, President Bush set an ambitious goal of replacing 20 percent of gasoline consumption in the United States by 2017, largely by producing 35 billion gallons of renewable fuels. Meeting those goals will be a challenge. Right now, biofuels come from food crops such as soybeans and corn; already the demand for corn to produce ethanol is driving up staple foods' prices and fueling protests in Mexico. One alternative to food sources is cellulosic materials such as wood chips, grass, and cornstalks, which are more abundant than corn grain. But these require special processing methods, and although some of these techniques have been demonstrated at small plants, they have yet to be proved commercially.
Copyright Technology Review 2007.
Sunday, March 25, 2007
Biomass Conversion Improvement
========================================================================
originally posted at http://www.e4engineering.com/Articles/298627/Boosting+biofuel+efficiency.htm
Purdue Researchers Propose New Biofuels Process They Say Could Meet All U.S. Transportation Needs
Purdue University chemical engineers have proposed a new environmentally friendly process for producing liquid fuels from plant matter (or biomass) potentially available from agricultural and forest waste that they said would provide all of the fuel needed for "the entire U.S. transportation sector."
The new approach, announced on March 14, modifies conventional methods for producing liquid fuels from biomass by adding hydrogen from a "carbon-free" energy source, such as solar or nuclear power, during a step called gasification. Adding hydrogen during this step suppresses the formation of carbon dioxide and increases the efficiency of the process, making it possible to produce three times the volume of biofuels from the same quantity of biomass, said Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering.
The researchers are calling their approach a "hybrid hydrogen-carbon process," or H2CAR. "Further research is needed to make this a large-scale reality," Agrawal said. "We could use H2CAR to provide a sustainable fuel supply to meet the needs of the entire U.S. transportation sector -- all cars, trucks, trains and airplanes."
The process, which would make possible the dawning of a "hydrogen-carbon economy," is detailed in a research paper in the Proceedings of the National Academy of Sciences. The paper was written by Agrawal, chemical engineering doctoral student Navneet R. Singh and chemical engineering professors Fabio H. Ribeiro and W. Nicholas Delgass.
A conventional method for turning biomass or coal into liquid fuels involves first breaking down the raw material with a chemical process that "gasifies" it into carbon dioxide, carbon monoxide and hydrogen. Then those constituents are turned into a liquid fuel with other processes.
In the H2CAR concept, hydrogen would be harvested by splitting water molecules, possibly with a well-known method called electrolysis. Then the hydrogen would be added during the gasification step, making the process more efficient by suppressing the formation of carbon dioxide and converting all of the carbon atoms to fuel.
When conventional methods are used to convert biomass or coal to liquid fuels, 60 percent to 70 percent of the carbon atoms in the starting materials are lost in the process as carbon dioxide, a greenhouse gas, whereas no carbon atoms would be lost using H2CAR, Agrawal said.
"This waste is due to the fact that you are using energy contained in the biomass to drive the entire process," he said. "I'm saying, treat biomass predominantly as a supplier of carbon atoms, not as an energy source."
Power for the electrolysis would be provided by carbon-free energy sources, such as solar, wind or nuclear power. And, unlike conventional methods of producing liquid fuels from plant matter and coal, H2CAR would not emit carbon dioxide into the atmosphere, the researchers said.
"The goal is to accomplish the complete transformation of every carbon atom in the feedstock to liquid fuel by supplementing the conversion process with hydrogen from a carbon-free energy source," Agrawal said.
Other researchers have estimated that the United States has a sustainable supply of about 1.4 billion tons of biomass each year that could be used specifically for the production of liquid fuels. With conventional methods, that quantity of biomass would provide 30 percent of the fuel required for the nation's annual transportation needs. But the same quantity of biomass would provide enough fuel to meet all transportation needs using the new H2CAR method, Agrawal said.
'This is possible without using any additional land," he said.
A federal study indicates that 1 billion tons of biomass is potentially available every year from agricultural sources such as crop wastes, animal manure, grains and other crops. The remaining biomass could come from sources including fuel wood from forests, wastes left over from wood processing mills and paper mills, and construction and demolition debris.
The process also offers potential advantages over producing liquid fuels from coal using conventional methods, which emit carbon dioxide. Because H2CAR would not emit this additional carbon dioxide, the process would eliminate the need for proposed carbon dioxide "sequestering," the researchers said.
Sequestering would involve pumping carbon-dioxide emissions into saltwater aquifers and hollow underground pockets that used to contain oil, natural gas and coal deposits. However, the procedure poses several potential pitfalls.
"Clearly, massive quantities of carbon dioxide would be sequestered during a century-long production of liquid fuels from coal," Agrawal said. "This would place extreme demands on the carbon dioxide capture, storage and monitoring systems."
The new process also would be more practical than all-electric or hydrogen-powered cars, in part because of the limited storage capacity of batteries and hydrogen storage tanks, the researchers said.
"The tremendous convenience provided by the existing infrastructure for delivering and storing today's fuels is a huge deterrent to introducing technologies that use only batteries or hydrogen alone," Agrawal said. "A major advantage of our process is that it would enable us to use the current infrastructure and internal combustion engine technology. It is quite attractive for hybrid electric vehicles and plug-in hybrid electric vehicles."
To grow enough biomass for the entire nation's transportation needs using the conventional method for producing biofuels would require a land area 25 percent to 55 percent the size of the United States, compared with about 6 percent to 10 percent for the H2CAR process.
"This large reduction of land area needed for H2CAR provides an opportunity for sustainable production of hydrocarbon fuel for the foreseeable future," Agrawal said.
A major reason less land would be needed is because of the overall higher efficiency of generating hydrogen by splitting water molecules using solar energy to drive the electrolysis. Usually, the hydrogen in liquid fuels made from biomass comes from the plant matter itself. However, it typically takes more than 10 times the solar energy to grow crops than it does to produce the equivalent quantity of hydrogen possessing the same energy content by using the solar-power electrolysis method, Agrawal stated.
"So providing hydrogen derived from water through solar electrolysis reduces the amount of biomass needed," Agrawal said. "The average energy efficiency of growing crops is typically less than 1 percent, whereas the energy efficiency of photovoltaic cells to split water into hydrogen and oxygen is about 8 percent to 10 percent. I am getting hydrogen at a higher efficiency than I get biomass, meaning I need less land."
Using coal exclusively to produce liquid fuels for the nation's transportation sector could deplete all coal deposits in the United States in about 90 years, whereas H2CAR would enable the known coal reserves to last 140 years.
The researchers suggest in the paper the chemical processing steps needed to make the new approach practical. However, making the concept economically competitive with gasoline and diesel fuel would require research in two areas: finding ways to produce cheap hydrogen from carbon-free sources and developing a new type of gasifier needed for the process.
"Having said that, this is the first concept for creating a sustainable system that derives all of our transportation fuels from biomass," Agrawal said.
Purdue has filed a patent for the concept. The approach is in the conceptual stages, and a plan for experimental research is in progress.
========================================================================
originally posted at http://www.e4engineering.com/Articles/298627/Boosting+biofuel+efficiency.htm
Purdue Researchers Propose New Biofuels Process They Say Could Meet All U.S. Transportation Needs
Purdue University chemical engineers have proposed a new environmentally friendly process for producing liquid fuels from plant matter (or biomass) potentially available from agricultural and forest waste that they said would provide all of the fuel needed for "the entire U.S. transportation sector."
The new approach, announced on March 14, modifies conventional methods for producing liquid fuels from biomass by adding hydrogen from a "carbon-free" energy source, such as solar or nuclear power, during a step called gasification. Adding hydrogen during this step suppresses the formation of carbon dioxide and increases the efficiency of the process, making it possible to produce three times the volume of biofuels from the same quantity of biomass, said Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering.
The researchers are calling their approach a "hybrid hydrogen-carbon process," or H2CAR. "Further research is needed to make this a large-scale reality," Agrawal said. "We could use H2CAR to provide a sustainable fuel supply to meet the needs of the entire U.S. transportation sector -- all cars, trucks, trains and airplanes."
The process, which would make possible the dawning of a "hydrogen-carbon economy," is detailed in a research paper in the Proceedings of the National Academy of Sciences. The paper was written by Agrawal, chemical engineering doctoral student Navneet R. Singh and chemical engineering professors Fabio H. Ribeiro and W. Nicholas Delgass.
A conventional method for turning biomass or coal into liquid fuels involves first breaking down the raw material with a chemical process that "gasifies" it into carbon dioxide, carbon monoxide and hydrogen. Then those constituents are turned into a liquid fuel with other processes.
In the H2CAR concept, hydrogen would be harvested by splitting water molecules, possibly with a well-known method called electrolysis. Then the hydrogen would be added during the gasification step, making the process more efficient by suppressing the formation of carbon dioxide and converting all of the carbon atoms to fuel.
When conventional methods are used to convert biomass or coal to liquid fuels, 60 percent to 70 percent of the carbon atoms in the starting materials are lost in the process as carbon dioxide, a greenhouse gas, whereas no carbon atoms would be lost using H2CAR, Agrawal said.
"This waste is due to the fact that you are using energy contained in the biomass to drive the entire process," he said. "I'm saying, treat biomass predominantly as a supplier of carbon atoms, not as an energy source."
Power for the electrolysis would be provided by carbon-free energy sources, such as solar, wind or nuclear power. And, unlike conventional methods of producing liquid fuels from plant matter and coal, H2CAR would not emit carbon dioxide into the atmosphere, the researchers said.
"The goal is to accomplish the complete transformation of every carbon atom in the feedstock to liquid fuel by supplementing the conversion process with hydrogen from a carbon-free energy source," Agrawal said.
Other researchers have estimated that the United States has a sustainable supply of about 1.4 billion tons of biomass each year that could be used specifically for the production of liquid fuels. With conventional methods, that quantity of biomass would provide 30 percent of the fuel required for the nation's annual transportation needs. But the same quantity of biomass would provide enough fuel to meet all transportation needs using the new H2CAR method, Agrawal said.
'This is possible without using any additional land," he said.
A federal study indicates that 1 billion tons of biomass is potentially available every year from agricultural sources such as crop wastes, animal manure, grains and other crops. The remaining biomass could come from sources including fuel wood from forests, wastes left over from wood processing mills and paper mills, and construction and demolition debris.
The process also offers potential advantages over producing liquid fuels from coal using conventional methods, which emit carbon dioxide. Because H2CAR would not emit this additional carbon dioxide, the process would eliminate the need for proposed carbon dioxide "sequestering," the researchers said.
Sequestering would involve pumping carbon-dioxide emissions into saltwater aquifers and hollow underground pockets that used to contain oil, natural gas and coal deposits. However, the procedure poses several potential pitfalls.
"Clearly, massive quantities of carbon dioxide would be sequestered during a century-long production of liquid fuels from coal," Agrawal said. "This would place extreme demands on the carbon dioxide capture, storage and monitoring systems."
The new process also would be more practical than all-electric or hydrogen-powered cars, in part because of the limited storage capacity of batteries and hydrogen storage tanks, the researchers said.
"The tremendous convenience provided by the existing infrastructure for delivering and storing today's fuels is a huge deterrent to introducing technologies that use only batteries or hydrogen alone," Agrawal said. "A major advantage of our process is that it would enable us to use the current infrastructure and internal combustion engine technology. It is quite attractive for hybrid electric vehicles and plug-in hybrid electric vehicles."
To grow enough biomass for the entire nation's transportation needs using the conventional method for producing biofuels would require a land area 25 percent to 55 percent the size of the United States, compared with about 6 percent to 10 percent for the H2CAR process.
"This large reduction of land area needed for H2CAR provides an opportunity for sustainable production of hydrocarbon fuel for the foreseeable future," Agrawal said.
A major reason less land would be needed is because of the overall higher efficiency of generating hydrogen by splitting water molecules using solar energy to drive the electrolysis. Usually, the hydrogen in liquid fuels made from biomass comes from the plant matter itself. However, it typically takes more than 10 times the solar energy to grow crops than it does to produce the equivalent quantity of hydrogen possessing the same energy content by using the solar-power electrolysis method, Agrawal stated.
"So providing hydrogen derived from water through solar electrolysis reduces the amount of biomass needed," Agrawal said. "The average energy efficiency of growing crops is typically less than 1 percent, whereas the energy efficiency of photovoltaic cells to split water into hydrogen and oxygen is about 8 percent to 10 percent. I am getting hydrogen at a higher efficiency than I get biomass, meaning I need less land."
Using coal exclusively to produce liquid fuels for the nation's transportation sector could deplete all coal deposits in the United States in about 90 years, whereas H2CAR would enable the known coal reserves to last 140 years.
The researchers suggest in the paper the chemical processing steps needed to make the new approach practical. However, making the concept economically competitive with gasoline and diesel fuel would require research in two areas: finding ways to produce cheap hydrogen from carbon-free sources and developing a new type of gasifier needed for the process.
"Having said that, this is the first concept for creating a sustainable system that derives all of our transportation fuels from biomass," Agrawal said.
Purdue has filed a patent for the concept. The approach is in the conceptual stages, and a plan for experimental research is in progress.
IRV Article
===========================================================================================
originally posted at http://www.fairvote.org/?page=19
===================================================================================
Arkansas Expands Use of Instant Runoff Ballots
All Overseas Voters Will Join Military Personnel in Using Ranked Ballots
Soldier Voting
On March 9, Arkansas Governor Mike Beebe signed legislation requiring instant runoff ballots for all overseas absentee voters. This is an expansion of the state's successful use of ranked ballots to ensure overseas military voters' ballots are counted. The bill was approved unanimously by both houses of the legislature.
Springfield, IL, also has the opportunity to use instant runoff ballots to protect overseas voters. The city council has placed a measure for instant runoff ballots on the April 17 ballot. This measure has received support from the mayor and the county election administrator.
President's note:
As explained before, IRV may be useful to environmental canidates who tend to be less well financed than business backed candidates.
===========================================================================================
originally posted at http://www.fairvote.org/?page=19
===================================================================================
Arkansas Expands Use of Instant Runoff Ballots
All Overseas Voters Will Join Military Personnel in Using Ranked Ballots
Soldier Voting
On March 9, Arkansas Governor Mike Beebe signed legislation requiring instant runoff ballots for all overseas absentee voters. This is an expansion of the state's successful use of ranked ballots to ensure overseas military voters' ballots are counted. The bill was approved unanimously by both houses of the legislature.
Springfield, IL, also has the opportunity to use instant runoff ballots to protect overseas voters. The city council has placed a measure for instant runoff ballots on the April 17 ballot. This measure has received support from the mayor and the county election administrator.
President's note:
As explained before, IRV may be useful to environmental canidates who tend to be less well financed than business backed candidates.
Subscribe to:
Posts (Atom)